Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinform Adv ; 2(1): vbab047, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699416

RESUMEN

Summary: MicroRNAs (miRNAs) are single stranded gene regulators of 18-25 bp in length. They play a crucial role in regulating several biological processes in insects. However, the functions of miRNA in Glossina pallidipes, one of the biological vectors of African animal trypanosomosis in sub-Saharan Africa, remain poorly characterized. We used a combination of both molecular biology and bioinformatics techniques to identify miRNA genes at different developmental stages (larvae, pupae, teneral and reproductive unmated adults, gravid females) and sexes of G. pallidipes. We identified 157 mature miRNA genes, including 12 novel miRNAs unique to G. pallidipes. Moreover, we identified 93 miRNA genes that were differentially expressed by sex and/or in specific developmental stages. By combining both miRanda and RNAhybrid algorithms, we identified 5550 of their target genes. Further analyses with the Gene Ontology term and KEGG pathways for these predicted target genes suggested that the miRNAs may be involved in key developmental biological processes. Our results provide the first repository of G. pallidipes miRNAs across developmental stages, some of which appear to play crucial roles in tsetse fly development. Hence, our findings provide a better understanding of tsetse biology and a baseline for exploring miRNA genes in tsetse flies. Availability and implementation: Raw sequence data are available from NCBI Sequence Read Archives (SRA) under Bioproject accession number PRJNA590626. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

2.
Front Res Metr Anal ; 6: 669675, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34056516

RESUMEN

According to the United Nations Educational, Scientific, and Cultural Organization (UNESCO), Open Science is the movement to make scientific research and data accessible to all. It has great potential for advancing science. At its core, it includes (but is not limited to) open access, open data, and open research. Some of the associated advantages are promoting collaboration, sharing and reproducibility in research, and preventing the reinvention of the wheel, thus saving resources. As research becomes more globalized and its output grows exponentially, especially in data, the need for open scientific research practices is more evident - the future of modern science. This has resulted in a concerted global interest in open science uptake. Even so, barriers still exist. The formal training curriculum in most, if not all, universities in Kenya does not equip students with the knowledge and tools to subsequently practice open science in their research. Therefore, to work openly and collaboratively, there is a need for awareness and training in the use of open science tools. These have been neglected, especially in most developing countries, and remain barriers to the cause. Moreover, there is scanty research on the state of affairs regarding the practice and/or adoption of open science. Thus, we developed, through the OpenScienceKE framework, a model to narrow the gap. A sensitize-train-hack-collaborate model was applied in Nairobi, the economic and administrative capital of Kenya. Using the model, we sensitized through seminars, trained on the use of tools through workshops, applied the skills learned in training through hackathons to collaboratively answer the question on the state of open science in Kenya. While the former parts of the model had 20-50 participants, the latter part mainly involved participants with a bioinformatics background, leveraging their advanced computational skills. This model resulted in an open resource that researchers can use to publish as open access cost-effectively. Moreover, we observed a growing interest in open science practices in Kenya through literature search and data mining and that lack of awareness and skills may still hinder the adoption and practice of open science. Furthermore, at the time of the analyses, we surprisingly found that out of the 20,069 papers downloaded from BioRXiv, only 18 had Kenyan authors, a majority of which are international (16) collaborations. This may suggest poor uptake of the use of preprints among Kenyan researchers. The findings in this study highlight the state of open science in Kenya and challenges facing its adoption and practice while bringing forth possible areas for primary consideration in the campaign toward open science. It also proposes a model (sensitize-train-hack-collaborate model) that may be adopted by researchers, funders and other proponents of open science to address some of the challenges faced in promoting its adoption in Kenya.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...